

 Navigation

 	
 index

 	
 next |

 	tutorial.todoapp documentation

WARNING: If you are reading this on GitHub, DON’T! Read it on ReadTheDocs:

http://tutorialtodoapp.readthedocs.org/en/latest/index.html so you have

working references and proper formatting.

Plone Todo list application tutorial

	Framework:	Plone 4.3 [http://plone.org]

	Bug tracker:	https://github.com/collective/tutorial.todoapp/issues

	Source:	https://github.com/collective/tutorial.todoapp

	Documentation:	http://tutorialtodoapp.readthedocs.org/

	Code status:	[image: http://travis-ci.org/collective/tutorial.todoapp.png]
 [http://travis-ci.org/collective/tutorial.todoapp]

You will learn to:

	create custom content-types Through-The-Web

	create and apply custom workflows

	create custom listings

	dump your changes into a filesytem package to future-proof them

	write tests for your filesystem package

Summary

It’s a fact - Plone has a lot of complicated features. That doesn’t mean
Plone is hard for everything! This is a simple tutorial that anyone can
follow to get a simple Todo list application running inside of Plone.
Would you want to deploy Plone for just a Todo list in real life? Probably
not. You can however learn several simple, fast concepts that will get you
most of the way there. Feeling like you don’t understand something
completely or the terminology is getting to you? Sit back, relax, and finish
the tutorial. If in the end things still aren’t clear, please give feedback
and we’ll look at what we could do better.

The Tutorial

	Prerequisites

	Tutorial Setup

	Virtualenv

	Troubleshooting

	Chapter 1: Through-The-Web
	Getting Started with Content Types

	Getting Started with Workflows

	Chapter 2: Filesystem package
	Package skeleton

	Exporting configuration

	Tests

	Troubleshooting

	Chapter 3: Custom View
	View class

	View template

	Static resources

	Try it out

	Tests

	Troubleshooting

	Chapter 4: Bling-bling
	AJAX view

	Custom JavaScript

	Trying it out!

	Tests

	The end

	Troubleshooting

Developer Documentation

Information on how to contribute to this tutorial. Note that all code
should follow plone.api code conventions [http://ploneapi.readthedocs.org/en/latest/contribute/conventions.html].

	Releasing a new version
	Checklist

	Actions

	Example

	Changelog
	1.1 (2013-07-04)

	1.0 (2012-09-11)

	License (3-clause BSD)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Caipirinha Sprinters.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tutorial.todoapp documentation

WARNING: If you are reading this on GitHub, DON’T! Read it on ReadTheDocs:

http://tutorialtodoapp.readthedocs.org/en/latest/prelude.html so you have

working references and proper formatting.

Prerequisites

	You have Git installed and vaguely know how to use it.

	You are working with Python 2.6 or 2.7

	You have already installed (listed names are for Ubuntu/Debian, should be
similar for your distribution): python-setuptools, python-virtualenv,
zlib1g-dev, libxslt1-dev and libxml2-dev.

	For Ubuntu/Debian users it may be worthwhile to install build-essential
(sudo apt-get install build-essential) to make sure you have necessary
build tools.

	Sorry Windows users, but you’ll have to translate as usual from n*x to
Windows-ese.

Tutorial Setup

Since this is a tutorial on how to be a developer, there will always be a
little bit of setup. There are many ways that this could be done and integrated
with the Plone Unified Installer [https://plone.org/documentation/manual/installing-plone/installing-on-linux-unix-bsd/what-is-the-unified-installer],
but those are not covered here. It is possible though to use this tutorial in
the context of the Unified Installer by just installing the source skeleton.

	Using Git, checkout the project code for this tutorial. Then run make
to prepare the development environment. There are sometimes problems on Mac
and Linux machines with pre-installed versions of Python. If you run into
issues, please see Troubleshooting:

> mkdir tutorial.todoapp
> git clone git://github.com/collective/tutorial.todoapp.git ./
> make

Note

This will take your system python interpreter. If you wish to use a custom
one, run it like make python=/usr/local/bin/python2.7

Note

Whenever you are stuck with a broken environment and want to start over,
run make clean followed by make. This will remove everything but
your source files and your database, and then continue to rebuild the
entire environment.

Note

Running make also generates this documentation for you locally and
runs all tests. See Makefile for other commands you have available,
such as make docs and make tests.

	Before starting the Plone instance, lets activate our virtualenv. For more information on virtualenv check Virtualenv:

> source bin/activate

	Next up, start the Plone instance:

> ./bin/instance fg

	Open up your browser and navigate to http://localhost:8080/

	Click ‘Create a New Plone Site’. The default username and password is
admin:admin.

	Change the name and id if you wish, but keep in mind that for this
tutorial we will assume that the name of the site is Plone and the
Plone instance is located at http://localhost:8080/Plone.

[image: _images/dexterity_extension.jpg]

	Under Add-ons, make sure to check Dexterity Content Types and
tutorial.todoapp then click Create Plone Site.

[image: _images/install_todo.jpg]

	There, your Plone site is created and you can continue with the tutorial.

[image: _images/welcome_to_plone.jpg]

Woot! Let’s go.

Virtualenv

virtualenv is a tool to create isolated Python environments. virtualenv documentation [http://www.virtualenv.org/en/latest/].

Troubleshooting

Sometimes setting up development environment gives you lemons. There are various
ways to go around that.

In case you don’t have correct Python version or your system Python environment
is broken (yes, I’m looking to you OS X), buildout.python gives you get out of
jail free card. To install it, see the
install docs [https://github.com/collective/buildout.python/blob/master/docs/INSTALL.txt].
Then use buildout.python/python-2.7/bin/python bootstrap.py –distribute step as
in Tutorial Setup section and so on.

If everything fails, it’s time to use a virtual machine. See install steps [https://github.com/plone/coredev.vagrant#installation] to prepare and try
again with Tutorial Setup section.

 Copyright 2014, Caipirinha Sprinters.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tutorial.todoapp documentation

WARNING: If you are reading this on GitHub, DON’T! Read it on ReadTheDocs:

http://tutorialtodoapp.readthedocs.org/en/latest/chapter_1.html so you

have working references and proper formatting.

Chapter 1: Through-The-Web

Getting Started with Content Types

If you don’t know what a content type is, don’t worry! Sit back, relax, and do
the tutorial! I’ll save the mumbo jumbo definitions for another day. In this
first part, we will make a Todo list without touching any code. It won’t be
fancy, but it will give you a good idea of how things work in Plone.

The way Plone handles content is a little different than your average
relational database driven framework, so if you don’t understand something
right away, sit back, relax, and finish the tutorial.

Generally speaking, content-types are just that: types of content. By default,
in Plone you get the News Item content-type, the Event content-type and so on.
So if you add a content item that is of Event type, you are using the Event
content-type. In our case, we will create a new content-type that will
represent a Todo Item.

Create a New Content Type

First we need to create a new content type to represent an item on our Todo
list. This will be a type with one field, that which needs to be done.

	Navigate to site setup as shown below, or just enter
http://localhost:8080/Plone/@@overview-controlpanel in your browser.
This is where you can configure Plone for happy fun time.

[image: _images/site_setup.jpg]

	Now comes the fun part. We want to create our own type Through-The-Web
aka. TTW. This type will be a Todo Item. Let’s click Dexterity Content
Types (or go directly to
http://localhost:8080/Plone/@@dexterity-types).

[image: _images/plone_configuration_panel.jpg]

	Create a Todo List Item by clicking Add New Content Type.

[image: _images/add_content_type.jpg]

	Fill in the fields as seen below and then click Add.

[image: _images/add_todo_content_type.jpg]

	Now you will see that there is a new type to play with. There are two
important things we need to do here: we need to adjust some behaviors,
and add some fields. Let’s look at behaviors first.

[image: _images/todo_item_behaviors.jpg]

	By default, all Plone content-types have Dublin Core [http://en.wikipedia.org/wiki/Dublin_Core] metadata enabled (you may know
it as title and description. We don’t need this for our über simple
Todo list item. Uncheck Dublin Core metadata and then click Save.

[image: _images/behaviors_config.jpg]

	Next we need to add some fields. Because this type is so simple, we will
add just one field, but feel free to go CRAZY. Start by going back to the
Fields tab and clicking Add new field....

[image: _images/add_new_field.jpg]

	Add a field called Todo, or anything else you want. But! Note that it’s
very important that the Short Name field value is title. By using
this key short name, we make sure that all Todo Items are searchable from
smart search. Update the field as seen below and click Add.

[image: _images/add_todo_field.jpg]

	You will see that a new field has been added to your content type. If you
are feeling adventuresome, click on the settings tab next to the field to
set other properties, or just see what’s available.

[image: _images/final_todo_fields_config.jpg]

Trying out the Todo Item content-type

Now it’s time to reap the rewards of all of your effort. Let’s put all of our
Todo Items in one particular folder so that we can have collections of items
throughout the site. For this tutorial, we will be putting everything in the
root of the site so it’s easy to debug.

	From the root, add a new folder called TODO list.

[image: _images/add_folder_menu.jpg]
[image: _images/save_todo_folder.jpg]

	Add a new Todo Item to the new Todo folder.

[image: _images/add_todo_item.jpg]
[image: _images/save_todo_item.jpg]

	Celebrate!

[image: _images/todo_item.jpg]
You may be wondering about earlier, when we asked you to make sure that the
short name for the Todo Item was called title. The time has come to
let you in on a little secret. Calling the short name either title or
description will automatically add that text to the livesearch menu.
WHAT?!? I know! When life gives you lemonade, spike it with vodka and enjoy
liberally! You can now search for your Todo Items in Live Search.

[image: _images/live_search_title.jpg]

But wait a minute... This todo item is marked private, and that doesn’t
really make sense. It’s a good thing Plone has an easy solution for that. In
the next section, we will go over the basics of that magical, mystical word:
workflow.

Getting Started with Workflows

So what is a workflow? It is a mechanism to control the flow of a
content item through various states in time. Most commonly, and by default in Plone,
you deal with a publication workflow. For example: A writer writes up a News
Item and submits it for review. Then the in-house reviewing team goes through
the text and publishes the News Item so it is public for the entire world to
see.

The Todo Item we added in the last section is marked as private because by
default all new Plone content items are assigned a workflow
called simple_publication_workflow. I know what you are thinking:
simple publication whodie whatie grble gobble??!?! Just like before, let’s
bypass trying to explain what that means and just fix it. Relax, enjoy, and
finish the tutorial!

Todo Items really have 2 states that we are interested in: open and
complete. Let’s make that happen.

	Head over to the ZMI at http://localhost:8080/Plone/manage_main.

	In the ZMI, open the portal_workflow tool.

[image: _images/manage_portal_workflow.jpg]
On this page, we see all content-types in our portal mapped to a workflow.
Our new type, Todo Item, is mapped to (Default). You can see right below
that the default is Simple Publication Workflow. This is just too
complex for our little Todo Item.

[image: _images/default_workflow.jpg]

	So let’s create a new one that suites our needs perfectly! Click the
contents tab at the top of the page to get a listing of all the
available workflows.

[image: _images/portal_workflow_contents.jpg]
You can poke around here all you like, but the details of each one of these
workflows are better left to another tutorial. When in doubt, you can always
come back to these workflows to see examples of how things can be done.
Onwards and upwards!

	Let’s create a new workflow for our Todo Items and call it
todo_item_workflow. We will make a new workflow by copying and
customising one of the workflows that are already there. Duplicate the
one_state_workflow.

[image: _images/copy_workflow.jpg]

	Rename the copied workflow to todo_item_workflow.

[image: _images/rename_workflow.jpg]
[image: _images/save_rename_workflow.jpg]

	You will be spit back out to the workflow contents page. Click the workflow
to start editing.

[image: _images/edit_todo_workflow.jpg]

	Let’s update the name of the workflow so we don’t double take later on.

[image: _images/retitle_workflow.jpg]

	Workflow is something that takes time to get used to if you have never
encountered the concept. The best analogy in our case is to a car. The car
engine has two simple states: on and off. To transition from on to off
and vice versa, it needs some action from the driver. The same for our TODO
items. They have two states: open and completed. In order to get them
from open to completed, the user needs to click something. Don’t
understand yet? Relax, sit back, and finish the tutorial.

Lets start by adding our base states. We will call them open and
complete. From the edit workflow screen, click on the States tab.

[image: _images/workflow_base_view.jpg]

	Delete the currently listed state.

[image: _images/cleanup_states.jpg]

	Add two states with the ids open and completed.

[image: _images/add_open.jpg]
[image: _images/add_completed.jpg]

	Next lets add transitions. They will take the TODO item from
open to completed and vice versa (in case a user wants to revert an item
back to open). Click on the Transitions tab.

[image: _images/transitions_tab.jpg]

	Add two transitions: complete and reopen. When a user completes a
task, it will move into the completed state. When a user reopens a task,
it will go back to the open state.

[image: _images/add_transitions.jpg]

	Let’s add a few details to these new transitions. Let’s start with
complete. Click on complete to edit the transition.

[image: _images/edit_complete.jpg]

	First add a title so you remember later what this does. Description is
optional but adding one will help you keep your thoughts clear and remind
the future you what the today you is thinking. The destination state
should be set to completed. We also want to make sure that only people
with mega permissions, or the creator of the todo item itself, can change
the state so we add Modify portal content to the Permissions box.

All this means nothing if we don’t give the user a chance to change the
state. Next to Display in actions box, we can set the title for what
will be displayed in the workflow drop down box of the item (where
Pending, Reject, etc. where earlier). Let’s call it Complete. Last
but not least, we need to add the URL that the action points to. I could
make this tutorial 100 years long and explain why you have to do this, but
accept that it has to be done, relax, and follow this formula:

URL = %(content_url)s/content_status_modify?workflow_action=X

where X is the id of the transition. So for this case, in the URL box, you
will add

%(content_url)s/content_status_modify?workflow_action=complete

[image: _images/complete_details.jpg]
Double check everything and click Save.

	If your brain isn’t hurting yet it will be soon. Go back to the transitions
listing.

[image: _images/youre_welcome.jpg]
[image: _images/edit_reopen.jpg]

	Let’s update the reopen transition and update in a similar manner. This
time, the destination state is open, and following the formula above,
the URL is %(content_url)s/content_status_modify?workflow_action=reopen.

[image: _images/save_reopen.jpg]

	Now we have 2 states and 2 transitions, but they aren’t 100% linked
together ... yet. Go back to the workflow listing, click the States tab
and then click on completed to edit the state.

[image: _images/back_to_workflow.jpg]
[image: _images/edit_completed.jpg]

	Add a title, since this is what users see in the top right corner of the
TODO items, and then check reopen as a possible transition. This means
that when a TODO item is completed, it will only allow the user to reopen it
(and not re-complete it, for example). In the same respect, open the
open transition, add a title, and mark complete as a possible
transition.

[image: _images/save_completed.jpg]
[image: _images/save_open.jpg]

	When we create a new TODO item, we need to tell Plone what the first state
is. Go back to the workflow states listing, and make open the initial
state.

[image: _images/initial_state.jpg]

	And that’s it! Almost... Last but not least, we need to assign our new
workflow to our TODO item type. Go back to the main workflow screen.

[image: _images/home_base.jpg]

	Instead of mapping to the (Default) workflow, we are going to map to the
id of our new workflow, todo_item_workflow, and then click Change.

If you already have TODO items in your site, you MUST click Update
Security Settings to update the workflow for the items. Instead of going
into gross detail about why this is the case, just sit back, relax, finish
the tutorial, and remember to click this button any time you make changes
(yes! you can continue to change and update your workflows!).

[image: _images/map_to_workflow.jpg]

	Could the time have arrived? Time to try it out? YES! Go to your Todo
folder and add a new TODO Item. Validate that the workflow works as
expected. By toggling between the states.

[image: _images/works.jpg]

Congrats! You have now passed Plone Workflow 101. Next we will transition
from developing through the web (TTW) to developing on the filesystem.

 Copyright 2014, Caipirinha Sprinters.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tutorial.todoapp documentation

WARNING: If you are reading this on GitHub, DON’T! Read it on ReadTheDocs:

http://tutorialtodoapp.readthedocs.org/en/latest/chapter_2.html so you

have working references and proper formatting.

Chapter 2: Filesystem package

Alright! In Chapter 1 you got your content-type and your workflow hooked up and
running. You’re now ready for the next step: pushing your changes to a
filesystem-based package and into a version control system.

Now, why would you even want to do that? Here’s a couple of reasons:

	Tracking of changes

The most obvious one: when you store the configuration of your content-type
and your workflow in a VCS [http://en.wikipedia.org/wiki/Revision_control],
you can track how they changed over time. It’s useful to be able to look
back a few months and see how your files changed.

	Distribution to other developers

If you are working in a team you have two ways of distributing your work:
either write up a guide on what needs to be clicked for someone to come to
the state you are currently at (slow, manual and error-prone) OR you export
your configuration and the other developer simply imports it (fast,
consistent).

	Tests

Last, but the most important one, having your configuration exported to a
filesystem package allows you to write tests for it. When your test runner
spins up a Plone site to run tests against, it needs to have the same
content-type and workflow that you configured TTW. And importing
configuration is by far the easiest way to give the test runner just that.

Package skeleton

Let’s start by creating a package skeleton. Since writing things up from
scratch kinda sucks, use this tutorial as your skeleton.

Exporting configuration

Exporting Todo Item content-type

Navigate back to the dexterity content type panel or go directly to
http://localhost:8080/Plone/@@dexterity-types

Check the TODO item and then click on export type profile to download the
type. If you don’t check anything, it won’t do anything and there is currently
no error message so don’t be surprised.

[image: _images/export_todo.jpg]

This will start a download to your machine. Navigate to the download directory
and unzip the contents of the file that was downloaded. Here is an example of
what it will look like:

[image: _images/dexterity_export.jpg]

We need to take types.xml and the types folder, and save it in our base
product. You can use your finder or explorer to drag and drop, or use the
command line. I’ll use command line as an example but feel free to improvise.
You want to move the files into your default product profile. What’s a profile?
Don’t worry about it. Sit back, relax, and finish the tutorial. You will move
the files into

tutorial.todoapp/src/tutorial/todoapp/profiles/default

Warning

There is a bug in Plone 4.3 that makes the import process brake when
parsing XMLs that the export tool exports. To make it work we need to
remove the comment line from types.xml:

<!---*- extra stuff goes here -*--->

Anytime you perform some sort of configuration export from Plone to a custom
product, you will put the XML files in the profiles/default folder. Every time
you make changes to your types, you should re-export and save into the same
location. Now, when the next person installs the add-on, they wil have the
type already there!

Dependencies

Before we continue we need to tell Plone that whenever we install
tutorial.todoapp we want it to also pull in the Dexterity package, so our
content type is working happily. We do that by adding the following lines to
profiles/default/metadata.xml, inside the <metadata> tag.

<dependencies>
 <dependency>profile-plone.app.dexterity:default</dependency>
</dependencies>

Exporting todo_item_workflow

Exporting a workflow is very similar to exporting a Dexterity type. It just
takes a little bit more navigating and a trip to the ZMI. To export the
workflow, navigate to the root of the ZMI by gong to
http://localhost:8080/Plone/manage_main. From there, head into the
portal_setup tool:

[image: _images/enter_portal_setup.jpg]

WARNING: The following User Interface is not recommended for children under 18.

In the portal_setup tool, click on the export tab.

[image: _images/setup_export.jpg]

There are a LOT of things that you can export here, but that is for a different
tutorial. For now, find export item #27 called Workflow Tool, check the box
to the left. Then scroll all the way to the bottom and
Export selected steps.

[image: _images/check_workflow.jpg]

Just like the Dexterity content type, you will want to untar the downloaded
folder, and move into your default profile folder.

In that download you should have a file called workflows.xml and a folder
called workflows like below. You will move both of them to the default
profile.

[image: _images/export_workflow_example.jpg]

Place all of these files in your profile at

tutorial.todoapp/src/tutorial/todoapp/profiles/default

Now, this export exported the entire configuration for all workflows in your
site. But you are only interested in the todo_item_workflow configuration
and you don’t want to change configuration for other workflows. So, first,
remove all other workflow definitions (XML files).

rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/comment_review_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/folder_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/intranet_folder_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/intranet_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/one_state_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/plone_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/simple_publication_workflow

Secondly, remove all non-todoitem-related stuff from workflows.xml. In the
end the file should look like this:

<?xml version="1.0"?>
<object name="portal_workflow" meta_type="Plone Workflow Tool">
 <object name="todo_item_workflow" meta_type="Workflow"/>
 <bindings>
 <type type_id="todo_item">
 <bound-workflow workflow_id="todo_item_workflow"/>
 </type>
 </bindings>
</object>

And you are done! Congratulations on the birth of your new product!

Tests

Alright, tests! Considered a pain and a nuisance by some but loved by all
who do it. If you want your code to be solid and your site to be stable, tests
are a great way to get there.

The package you have on your filesystem is already configured to give you a
test-runner so you can immediately go and run it – obviously you have no
tests, but at least you try if your test runner works.

tutorial.todoapp$ make tests
Total: 0 tests, 0 failures, 0 errors in 0.000 seconds.

Note: you do NOT need to stop your Plone instance in order to run tests. They
will peacefully co-exist.

Good, the next thing to do is to add tests. Go to tutorial.todoapp repo on
GitHub [https://github.com/collective/tutorial.todoapp/]
and copy/paste (or download) all files from the src/tutorial/todoapp/tests
folder to your local src/tutorial/todoapp/tests folder. You can also get
the tests with git:

$ git branch --track chapter2 origin/chapter2 # tell git what chapter2 is
$ git checkout chapter2 src/tutorial/todoapp/tests # get tests

This folder will contain your test files:

	test_setup.py

This module contains tests that check if your package was successfully
installed and configured. Tests in here are concerned with XML files you have
in the profiles/default folder.

	test_todo_item.py

And finally a module that contains tests for your custom content-type.

We will not go into details of what each test does as we believe the test code
and its comments are in themselves informative and we will rather encourage you
to go through all tests, try to understand what they do, maybe change something
and see what happens, etc.

Remember that you run tests with make tests and you should get an output that
looks somewhat like this:

tutorial.todoapp$ make tests
[...snip...]
Set up tutorial.todoapp.tests.base.TodoAppLayer:Integration in 0.000 seconds.
Running:

Ran 11 tests with 0 failures and 0 errors in 9.782 seconds.
Tearing down left over layers:
Tear down tutorial.todoapp.tests.base.TodoAppLayer:Integration in 0.000 seconds.
Tear down tutorial.todoapp.tests.base.TodoAppLayer in 0.004 seconds.
Tear down plone.app.testing.layers.PloneFixture in 0.164 seconds.
Tear down plone.testing.z2.Startup in 0.012 seconds.
Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

Also, remember that whenever you run make your tests are gonna be run too.

Troubleshooting

If something goes wrong you can always go to GitHub and see how the code
for chapter 2 [https://github.com/collective/tutorial.todoapp/tree/chapter2]
should look like and compare this to what you have on your local machine.

 Copyright 2014, Caipirinha Sprinters.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tutorial.todoapp documentation

WARNING: If you are reading this on GitHub, DON’T! Read it on ReadTheDocs:

http://tutorialtodoapp.readthedocs.org/en/latest/chapter_3.html so you

have working references and proper formatting.

Chapter 3: Custom View

In this chapter you will learn how to add a custom view – in our case a
listing of Todo Items.

View class

Let’s start by adding the view class. You can go to tutorial.todoapp repo on
GitHub [https://github.com/collective/tutorial.todoapp/] and copy over code
from src/tutorial/todoapp/todo.py to your local computer or just
use git:

$ git branch --track chapter3 origin/chapter3 # tell git what chapter 3 is
$ git checkout chapter3 src/tutorial/todoapp/todo.py

We also need to tell Plone to display this view in the display drop-down menu
for Folders so we will later be able to set our view as a default display view
for our Todo folder. Let’s do that by using git to get a version of
Folder.xml and put it in src/tutorial/todoapp/profiles/default/types.

$ git checkout chapter3 src/tutorial/todoapp/profiles/default/types/Folder.xml

View template

Now that we have a class we can also add the template. Go to tutorial.todoapp
repo on GitHub [https://github.com/collective/tutorial.todoapp/] and copy
over code from src/tutorial/todoapp/templates/todo.pt to your local
computer or, again, use git.

$ git checkout chapter3 src/tutorial/todoapp/templates/todo.pt

The template uses the ZPT syntax, read more about it here [http://wiki.zope.org/ZPT/TutorialPart1].

Static resources

The template displays different icons for different workflow states of your
Todo Items. We need to add these icons to your package:

	Download open.png and completed.png from GitHub (they are in
src/tutorial/todoapp/static) into a new folder on your local
computer: src/tutorial/todoapp/static. You can use git again if
you don’t like manual work.

$ git checkout chapter3 src/tutorial/todoapp/static

	Tell Zope that this static folder contains static resources (icons,
CCS files, JavaScript files, etc.) by adding the following lines to
src/tutorial/todoapp/configure.zcml inside the <configure
tag:

<!-- Publish static files -->
<browser:resourceDirectory
 name="tutorial.todoapp"
 directory="static" />

After restarting your Zope server, files in your static folder will be
available on a standard URL:
http://localhost:8080/Plone/++resource++tutorial.todoapp/<filename>

Try it out

Because the XML configuration of our product has change, we need to
reinstall the product. This is accomplished by deactivating and
reactivating the product. Navigate to the add-ons manager or go directly
to http://localhost:8080/Plone/@@overview-controlpanel.

[image: _images/find_addons.jpg]

Deactivate the tutorial.todoapp product, and then reactivate it.

[image: _images/deactivate.jpg]
[image: _images/reactivate.jpg]

Note that every time you make a change to the xml files, by exporting or manual
edit, you must reactivate the product for the changes to take effect!

Now, we apply the new view to the folder holding our todo items. Navigate to
the folder you created in chapter 1, and update the display.

[image: _images/select_todo_view.jpg]

Celebrate!

[image: _images/custom_view.jpg]

If the de-activate / activate does not work you may need to restart Plone
instance to see the changes.

Tests

Cool, so you have verified that your code works through the browser and it’s
time to add tests to make sure your code keeps on working in the future.

First add the following snippet to test_setup.py to verify that your
Folders have the todo view on the Display drop-down menu.

types/Folder.xml
def test_folder_available_layouts(self):
 """Test that our custom display layout (@@todo) is available on folder.

 Also make sure that layouts that come with Plone out-of-the-box are
 also still there.
 """
 layouts = self.portal.folder.getAvailableLayouts()
 layout_ids = [id for id, title in layouts]

 # out-of-the-box layouts are still there
 self.assertIn('folder_listing', layout_ids)
 self.assertIn('folder_summary_view', layout_ids)
 self.assertIn('folder_tabular_view', layout_ids)
 self.assertIn('atct_album_view', layout_ids)
 self.assertIn('folder_full_view', layout_ids)

 # our custom one
 self.assertIn('todo', layout_ids)

If you haven’t already downloaded it, add a new test module:
test_todo_view.py. Download it from GitHub, put and it in your tests
folder and run tests. Feel free to fiddle around with it to see what it does.
As always, you can use git to get the file.

$ git checkout chapter3 src/tutorial/todoapp/tests/test_todo_view.py

Troubleshooting

If something goes wrong you can always go to GitHub and see how the code
for chapter 3 [https://github.com/collective/tutorial.todoapp/tree/chapter3]
should look like and compare this to what you have on your local machine.

 Copyright 2014, Caipirinha Sprinters.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tutorial.todoapp documentation

WARNING: If you are reading this on GitHub, DON’T! Read it on ReadTheDocs:

http://tutorialtodoapp.readthedocs.org/en/latest/chapter_3.html so you

have working references and proper formatting.

Chapter 4: Bling-bling

As a reward for making it all the way to the end, we will help you add some
fancy features to your project, otherwise known as bling and that means having
to write JavaScript. Fortunately Plone comes with jQuery so we can easily
integrate.

The final part of this tutorial will allow users to check and un-check items on
their todo list without having to load a new page request. Note that by
developing the functionality in this order, 100% of the functionality of the
application remains working even when javascript is disabled. Win!

AJAX view

Before we add front-end bling, we need some code that can handle these requests
coming in. Let’s create a simple view that will update the object in context to
a new state. Go to GitHub and copy the code for WorkflowTransition class
in todo.py. This class represents a view that our AJAX code will
call. You can also get the code with git, however note that now we are checking
out code from master, as Chapter 4 is the last chapter and its code is in
the master branch.

$ git checkout master src/tutorial/todoapp/todo.py

Take a look at the WorkflowTransition class and comments around the
code. There are a couple of things to point out specific to this setup:

grok.context(Container)

Tells us that this view should be called in the context of a Dexterity
Container item. So if you try to go to this view from the portal root or
anywhere in the site that is not a Dexterity item, Plone will return a 404 -
not found error. By default all Dexterity types that you create TTW are based
on the Dexterity Container base class.

grok.name('update_workflow')

This tells us on which URL the view will be available on. In this case, on
<url_to_plone_content_object>/update_workflow.

def render(self):

render is a special function that must be used. It is where all of the code
must go when used with grok directives. This is the main block of code that
will be executed.

transition = self.request.form.get('transition', '')

self.request is set by the base class, and anything based on BrowserView
will have access to this variable. All of GET/POST parameters will be stored
in self.request.form.

self.request.response.setHeader(
 'Content-Type', 'application/json; charset=utf-8')
return json.dumps(results)

When working with JSON, it’s not required to set the header content type, but
when used with certain jQuery calls it is expected to have the header set
correctly. If you don’t set this, it will sometimes work and sometimes not. Get
used to setting it!

Additionally, we return the result serialized as json by default. For making
and testing JSON web service calls, keep in mind that they should do exactly
one thing and no more. This makes it easy to integrate with Javascript and VERY
easy to test. We’ll see later on how easy it is to test this view.

Furthermore, before taking the plunge to wire up JavaScript, go directly to the
url and test the change. For example, if you have an item at
http://localhost:8080/Plone/todo-list/go-to-the-bathroom, you can test the
view by appending the view name and GET variables to the end of the item’s url.
However, you first need to restart your Zope first, so your Python files get
reloaded!

http://localhost:8080/Plone/todo-list/go-to-the-bathroom + update_workflow?transition = complete

http://localhost:8080/Plone/todo-list/go-to-the-bathroom/update_workflow?transition=complete

[image: _images/ajax_call.jpg]
For extra clarity: if you are not an expert in python, plone, AND javascript, I
highly recommend integrating bling bling in the following order:

	Write base view and passing test cases

	Test views in browser

	Make ajax interactive

Starting with bling from the start will only bring you pain.

Custom JavaScript

Now that we know the update_workflow view is working, let’s add some AJAX
handling on the top of it. Checkout the Javascript file and a JavaScript
registry file into your working directory:

git checkout master src/tutorial/todoapp/static/todoapp.js
git checkout master src/tutorial/todoapp/profiles/default/jsregistry.xml

jsregistry.xml contains all configuration needed to tell Plone how it
should register and use our JavaScript. It has a lot of options that are pretty
self explanatory (if you think like a machine).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	<?xml version="1.0"?>
<object name="portal_javascripts">
 <javascript
 cacheable="True"
 compression="safe"
 conditionalcomment=""
 cookable="True"
 enabled="True"
 expression=""
 inline="False"
 id="++resource++tutorial.todoapp/todoapp.js" />
</object>

Trying it out!

Holy moley you made it! Restart Zope (to reload Python files), reactivate the
product (to reimport XML files), do a hard reload in your web browser (to clear
any caches) and check out your todo list. The todo items should toggle between
complete and incomplete without the page reloading. Sweet!

Tests

As always, let’s add tests! First add the following snippet to test_setup
to verify that your JavaScript is registered in Plone.

jsregistry.xml
def test_js_registered(self):
 """Test that todoapp.js file is registered in portal_javascript."""
 resources = self.portal.portal_javascripts.getResources()
 ids = [r.getId() for r in resources]

 self.assertIn('++resource++tutorial.todoapp/todoapp.js', ids)

Lastly, add a new test module: test_workflow.py. Download it from GitHub,
put and it in your tests folder and run tests. Then fiddle around with it
to see what it does. As always, you can use git to get the file.

$ git checkout master src/tutorial/todoapp/tests/test_workflow.py

The end

This concludes the Todo app in Plone tutorial. Congratulations! Now it’s time
to checkout other tutorials and documentation available on developer.plone.org [http://developer.plone.org]!

Troubleshooting

If something goes wrong you can always go to GitHub and see how the code
in master [https://github.com/collective/tutorial.todoapp/]
should look like and compare this to what you have on your local machine.

 Copyright 2014, Caipirinha Sprinters.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tutorial.todoapp documentation

Releasing a new version

Releasing a new version of tutorial.todoapp involves the following steps:

	Create a git tag for the release.

	Push the git tag upstream to GitHub.

	Generate a distribution file for the package.

	Upload the generated package to Python Package Index (PyPI).

Checklist

Before every release make sure that:

	You have documented your changes in the HISTORY.rst file.

	You have modified the version identifier in setup.py to reflect the new
release.

	You have confirmed that the package description (generated from
README.rst and others) renders correctly by running bin/longtest.

	You have committed all changes to the git repository and pushed them
upstream.

	You have the working directory checked out at the revision you wish to
release.

Actions

For help with releasing we use jarn.mkreleaser. It’s listed as a dependency
in setup.py and should already be installed in your local bin:

$ bin/mkrelease -d pypi -pq ./

Note

In order to push packages to PyPI you need to have the appropriate access
rights to the package on PyPI and you need to configure your PyPI credentials
in the ~/.pypirc file, e.g.:

[distutils]
index-servers =
 pypi

[pypi]
username = fred
password = secret

Example

In the following example we are releasing version 0.1 of tutorial.todoapp. The
package has been prepared so that setup.py contains the version 0.1,
this change has been committed to git and all changes have been pushed
upstream to GitHub:

Check that package description is rendered correctly
$ bin/longtest

Make a release and upload it to PyPI
$ bin/mkrelease -d pypi -pq ./
Releasing tutorial.todoapp 0.1
Tagging tutorial.todoapp 0.1
To git@github.com:collective/tutorial.todoapp.git
* [new tag] 0.1 -> 0.1
running egg_info
running sdist
warning: sdist: standard file not found: should have one of README, README.txt
running register
Server response (200): OK
running upload
warning: sdist: standard file not found: should have one of README, README.txt
Server response (200): OK
done

Note

Please ignore the sdist warning about README file above. PyPI does not depend
on it and it’s just a bug in setupools (reported and waiting to be fixed).

 Copyright 2014, Caipirinha Sprinters.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tutorial.todoapp documentation

Changelog

1.1 (2013-07-04)

	Instructions for preparing the environment on various OSes.
[ielectric, zupo]

	Proof-reading the tutorial text.
[ielectric, zupo]

	Use latest best practices from bobtemplates.niteoweb.
[zupo]

	Use Plone 4.3.
[zupo]

1.0 (2012-09-11)

	Acted as guinea pigs and went through the entire tutorial slowly and
thoroughly.
[matejc, plamut]

	AJAXifying the @@todo view.
[eleddy]

	The @@todo BrowserView for listing Todo Items.
[zupo]

	Tests for GenericSetup exports of content-type and workflow.
[zupo]

	TTW part of the tutorial, loads of screenshots.
[eleddy]

	Skeleton.
[zupo]

 Copyright 2014, Caipirinha Sprinters.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	tutorial.todoapp documentation

License (3-clause BSD)

Copyright (c) 2012, Caipirinha Sprinters. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of Caipirinha Spriners nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL CAIPIRINHA SPRINTERS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2014, Caipirinha Sprinters.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	tutorial.todoapp documentation

Index

 B
 | C
 | F
 | G
 | H
 | L
 | R
 | T

B

 	

 	Bling-bling ajax view

C

 	

 	Custom View

F

 	

 	Filesystem package

G

 	

 	Getting Started with Content Types

H

 	

 	History

L

 	

 	License

R

 	

 	Releasing a new version

T

 	

 	Tutorial setup

 	

 	Tutorial table of contents

 Copyright 2014, Caipirinha Sprinters.
 Created using Sphinx 1.2.2.

 _images/default_workflow.jpg
todo_item (TODO Item) Ocfault ‘ohinolhe didnit...

(Default) Simple_publication_workflow

_images/ajax_call.jpg
C % | [localhost:8080/Plone/todo-list/go~to~the-bathroom/update_workflow?tran:

n=complete

b3

{"me:

age": "", "results": {"state": "completed”, "tramsitions": ["reopen’l},

true}

_images/plone_configuration_panel.jpg
Plone Configuration

B Addons [HTML Filtering 8 Secuity

@ Calendar @ site

-/ Configuration Registry = B Themes

% Content Rules Mail 4© TinyMCE Visual Editor

./ Dexterity Content Types. ./ Maintenance @ Types

@ Discussion 7 Markup 2 Users and Groups

% Editing 7 Navigation 7 Zope Management Interface

@ Erors 2, Search

_images/final_todo_fields_config.jpg
« Back to Dexterity Content Types

Edit TODO ltem (todo_item) (hstren .|

— Dofaut

tle — Text ine (String)

TODO =

fun options in here

fo the) youngat/heart.

_images/workflow_base_view.jpg
% Workflow at /Plone

‘Workli

‘Scripts | Permissio

al_workflow/todo_item_workflow
d todo_item_workflo}

Title DC Workflow Definiion _ ClICK{tOTCreate new/states

Description

"Manager'
role
bypasses
guards
Instance
creation
conditions Expression

Permission(s)

Save changes

Role(s)
21

_images/add_todo_field.jpg
Add new field

Title w
006

Short Name =
Used for programmatic access to the field.

as help text for the field.

Field type =
Text line (String)) Make sure this says title!
[asa | o= Thenclick!

_images/check_workflow.jpg
29

30

31

32

33

34

35

36

37

38

Workflow Tool Products.CMFCore.exportimport.wor

Export workflow tool's check
workfow dafinitions and || mmm—CREC

rting scripts.

Site Properties Products. CMFCore.exportimport.proj
Export site properties.

KSS registry Products.ResourceRegistries.exporti
Export stylesheet registry

MemberData properties Products.CMFPlone.exportimport.me
Export MemberData properties

Package browser layers plone.browserlayer.exportimport.ex
Export package browser

layers

Caching Policies Products.CMFCore.exportimport.cac

Export caching policy
manager's policies.

Archetype Tool Products. Archetypes.exportimport.a
Export Archetype Tool.
Viewlet Settings plone.app.viewletmanager.exportim
Export viewlet settings

MailHost Products.CMFCore.exportimport.m:
Export the mailhost's settings

and properties

CMFEditions Repository Tool Products.CMFEditions.exportimport.i
Export repository tool's

settings.

Content Type Registry Products.CMFCore.exportimport.con

Export content type regisi
precicates bindings, f CUSK

Javascript regists Products.ResourceRegistries. exporti

Exportall steps.

_images/portal_workflow_contents.jpg
€ C i | [localhost:8080/Plone/portal_workflow/ manage_selectWorkflows ¢z | & [@

‘Workflows 1 Overview

‘Security | Undo | Ownership | Inte

Workflows by type yworkflows are here

ATBooleanCriterion (Boolean Criterion)

ATCurrentAuthorCriterion (Current Author
Criterion)

ATDateCriteria (Friendly Date Criteria)

ATDateRangeCriterion (Date Range
Criterion)

ATListCriterion (List Criterion)

_images/select_todo_view.jpg
Contents Edt Rues Sharing Actions v Display v Addnew...v State: Published v
Standard view

E———

by admin — last modiied Aug 25, 2012 06: R LN EY
3 go to the bathroom — by admiSUNENRIMIN

5 2000-2012 by the Plone Foundation’

Powered by Plone & Pyihon
Site Map Accessibility Contact

_images/edit_completed.jpg
tes at /Plone/portal_workflow/todo_item_workflow/states

o Y

No transitions.

Delete | [Set Inital State

_images/add_transitions.jpg
Bl Properties | States | Transitions | Variables | Worklists | Scripts | Permissions | Groups

™ Workflow Transitions at
/Plone/portal_workflow/todo_item_workflow/transitions

Transition added. (2012-08-18 17:25)

0 complete < m—Eeping yOUIONIYOUFtoeS -

Destination state: (Remain in state) =
Trigger: User action firstitransition already/added

Note: Renaming a transition will not automatically update all items in the workflow
ffected by it. You will need to fix them manually

Rename | [Delete

~Second click-
Add a transition

d [reopen -

_images/add_open.jpg
Makelit/s

Add a state
1d [open .

_images/dexterity_export.jpg
Y e | EINERNER)

@ _ibrary [dexterity_ex...825183826 » (i types
(& Applications 1 types.xml
[apps

[buildouts
[Deskiop

(i3] Documents
&1 Downloads
1 Dropbox

(& Google Drive
[Graphics

(2 mail

(i Movies

(@ Music

& pictures

(& pPublic

(@ sites

[virtualenvs
+ zopectl

Forexample

_images/edit_todo_workflow.jpg
" Plone Workflow Tool at /Plone/portal workflow

 Add Workfiow |
Type Name size Last Modified
P
£2 comment_review_workflow (Comment Review e
Workflow)
") £ folder_workflow (Community Workflow for Folders) 2012-08-17 12:32
0o
() £} intranet_folder_workflow (Intranet Workflow for T
Folders)
) ¥ intranet_workflow (Intranet/Extranet Workflow) 2012-08-17 12:32
() £ one_state_workflow (Single State Workflow. 2012-08-17 12:32
] g
0} £ plone_workflow (Community Workflow) 2012-08-17 12:32

() £ simple_publication_workflow (Simple Publication
Workflow)

) £ todo_item_workflow (DC Workflow Definition 2012-08-17 17:52

2012-08-17 12:32

| Delete | | Import/Export | | Select All |

_images/save_completed.jpg
o Workflow State at
/Plone/portal_workflow/todo_item_workflow/states/completed

completed
Completed

1d
Title
Description

possible Transitions () complete (Completc
 reopen (wa-)b— Check

savechinges | g

Click

_images/custom_view.jpg
Contents Edt Rues Shaing Actions v Display v Addnew...v State: Published

TODO List

by admin — last modiled Aug 25, 2012 06:31 PM — History.

Title Status Last modified
= gotothe bathroom open Aug 25, 2012 06:29 PM
© cleanthe cat iterbox open Aug 25, 2012 06:33 PM

@ paybils open Aug 25, 2012 06:33 PM

_images/dexterity_extension.jpg
® Plone

Create a Plone site

Path identifier
The id of the site. This ends up as part of the URL.
No special characters are allowed.

Plone

Title
Ashort tite for the site. This will be shown in the title of the browser window on
each page.

Sie

Language
The main language of the site.
y—)

[Englis

Add-ons:

Select any add-ons you want to activate i
‘add-ons after the site has been creal

fediately. You can also activate
ing the Add-ons control panel.

() Arecibo
Plone interface to Arecibo
/ Dexterity Content Type
Configures various components needed for full Dexterity support.

_images/welcome_to_plone.jpg
P l o n e- Search site (Seareh |
O only in curent section

Home News Events Users

You are here: Home

Cotorts [Ect Rues Sharing Ao
Welcome to Plone

by admin — last modifled Aug 17, 2012 12:32 PM — History

Congratulations! You have successfully installed Plone.
Also available in presentation mode...

State: Published

Display v Add

fyoure seeing this instoad of the web site you wero expecting, the owner of tis web site has ust nstalled Plone. Do not contact the Pione Team o
ihe Plone mailng lss about tis.

Get started
Before you start exploring your newly created Plone site, please do the following:

1. Make sure you are logged in as an admin/manager user. (You should have a St Setup eniry inthe menu nthe top right corner)
2. Set up your mail server. (Plone neads a vald SMTP server to veriy users and send out password reminders)

3. Decide what security level you want on your site. (Alow sef regisration, password polices, etc)

Get comfortable

search.html

 Navigation

 		
 index

 		tutorial.todoapp documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Caipirinha Sprinters.
 Created using Sphinx 1.2.2.

_images/add_completed.jpg
Properties es | Transitions | Variables | Worklists | Scripts | Permissions | Grou

T Workflow States at /Plone/portal_workflow/todo_item_workflow/states

State added. (2012-08-18 17:18)

open
No transitions.

Delete | [Set Inital State

Add a state

W e — T |

_images/youre_welcome.jpg
____ Properties L § Variables

% Workflow Transition at
et o wokon todo_lam_worc natte

Properties changed. (2012-08-18 17:54)

d complete
Title Complete
Description [complete this task

Destination -

oy completed :
rigger Automatic
ype
+) Initiated by user action
Script
betore) [(one
Script R
v ®one) ¢
s Permission(s) [Modify portal content| Role(s) Group(s)
Expression 1
Display in Name (formatted) [Complete
actions box
URL (formatted) ‘%(content_url)s/content_status_modify?workflow_

Icon URL (formatted)
Category workfiow

Save changes

_images/save_todo_folder.jpg
You are here: Home / [-+]

Add Folder
Defaults Categorization Dates Ownership Settings

Title =

TODO List

Description
Used in item listings and search results.

[Can't walt to start getting things done - le's work on this fogether]
(mileage may vary)

==

_images/save_todo_item.jpg
Add TODO ltem

Something noeds 1o be done.

s Gojahead; clickiit.
Pick ﬁdma from soccer practice

Save || Cancel

_images/todo_item.jpg
You are here: Home / TODO List / Pick up grandma from soccer practice

Sharing

Pick up grandma from soccer practice

by admin — last modiled Aug 17, 2012 0520 PM — History.

_images/add_todo_content_type.jpg
Add Content Type

Type Name =
7000 tem

Short Name =
Used for programmatic access to the type.

todo_item

Description
Something that needs o be done.

_images/works.jpg
You are here: Home > Clean up code base

EZQ =it Rues Shaing Actions v State: Open v
m Item created

Clean up code base

)
by admin — last modified Aug 23, 2012 05:33 PM — History ItiworksY

_images/live_search_title.jpg
search |

LiveSearch | / sweet.

[Pick up grandma from soccerp...

Advanced Search...
Home

_images/deactivate.jpg
BT T R AP R EA Y SR IDODMRRRE, Qs < Spapoe

()& plone.app.i 104
Extension profile to install an intid utilty in a Plone site

_images/rename_workflow.jpg
" Plone Workflow Tool at /Plone/portal workflow

Type Name size
[£ cgmmCheckipleaseliow (Comment Review
orkflow)

™ 2 copy_of_one_state_workflow (Single State Workflow)
() £ folder_workflow (Community Workflow for Folders)

O 2 intranet_folder_workflow (Intranet Workflow for
Folders)

() £ intranet_workflow (Intranet/Extranet Workflow)
() 4% one_state_workflow (Single State Workflow)
£ plone_workahy Click{itinity workflow)

Blication_workflow (Simple Publication

[[Rename] (Cut | (Copy | [Paste | (Delete | [importiExport | [Seiect Al

[Add Workflow |

Last Modified
2012-08-23 16:37
2012-08-23
2012-08-23
2012-08-23
2012-08-23

2012-08-23
2012-08-23

2012-08-23

_images/export_workflow_example.jpg
setup_tool-2012082520154¢
O [8-] [~ Q

+ [dexterity_ex...825183826 [workflows "
workflows.xmi

README.html

 Navigation

 		
 index

 		tutorial.todoapp documentation »

Plone Todo list application tutorial

		Framework:		Plone 4.3 [http://plone.org]

		Bug tracker:		https://github.com/collective/tutorial.todoapp/issues

		Source:		https://github.com/collective/tutorial.todoapp

		Documentation:		http://tutorialtodoapp.readthedocs.org/

		Code status:		[image: http://travis-ci.org/collective/tutorial.todoapp.png]
 [http://travis-ci.org/collective/tutorial.todoapp]

You will learn to:

		create custom content-types Through-The-Web

		create and apply custom workflows

		create custom listings

		dump your changes into a filesytem package to future-proof them

		write tests for your filesystem package

Summary

It’s a fact - Plone has a lot of complicated features. That doesn’t mean
Plone is hard for everything! This is a simple tutorial that anyone can
follow to get a simple Todo list application running inside of Plone.
Would you want to deploy Plone for just a Todo list in real life? Probably
not. You can however learn several simple, fast concepts that will get you
most of the way there. Feeling like you don’t understand something
completely or the terminology is getting to you? Sit back, relax, and finish
the tutorial. If in the end things still aren’t clear, please give feedback
and we’ll look at what we could do better.

 © Copyright 2014, Caipirinha Sprinters.
 Created using Sphinx 1.2.2.

_images/add_todo_item.jpg
Home News Events Users TODO List

You are here: Home / TODO List

Rules Sharing

Actions v Display v Addnew... v State: Private v

[T

Event

i i File
TODO List

by admin — st modifed Aug 17, 2012 050 PH — History
Can't wait to start getting things done - let's work on this tog

“There are currenty no foms inthis folder

Folder

B Image
% Link

= News Item
& Page
& Todo ltem

Vansgepoiiss ZOMGithere itis! Click it Quick!

—

‘The Plone® Open Source CMSMWCM is © 2000-2012 by the Plone Foundation and!

Restrictions..

GPLIicense.

_images/add_folder_menu.jpg
S

You are here: Home

Contorts [Edt Rues Shaing Actions v Display v Addnow...v Stale: Published v
% Colection

Welcome to Plone & Event

by admin — ast modifed Aug 17, 2012 11:44 AM — History File

Congratulations! You have successfuly installed Plone. P
e vt e mo

& Image

e Do not contact the Plon.

Ifyou're seeing this instead of the web ste you wers expecting, the owner of y#fveb site
Team or the Pione maiing ists about this.

Get started HoverandjthenclickiFolder, i
sta |Hover:and|thenclick{Folder; 3 res

Before you start exploring your newly created Plone site, please do the follo@ JRCTN LY

& News ltem

1. Make sure you are logged in as an admin/manager user. (You should have a St Setup eniry in the menu n the top right

_images/edit_reopen.jpg
™ Workflow Transitions at
/Plone/portal_workflow/todo_item_workflow/transitions
C) complete Complete

Destination state: completed

Trigger: User action

Requires permission: Modify portal content
ds to actions box: Complete

Bestination state: (zemain in state)
Trigger: User action

_images/enter_portal_setup.jpg
./ portal_historyidhandler

(@ portal_interface (Allows to query object interfaces)
9 portal_javascripts (Registry of Javascript files)

@ portal_kss (Registry of Kinetic Style Sheets)
portal_languages (Language specific settings)

@ portal_memberdata (Handles the available properties on
members)
) @ portal_membership (Handles membership policies)
) @ portal_metadata (Controls metadata like keywords,
copyrights, etc)
g ® portal_migration (Upgrades to newer Plone versions)

] ./ portal_modifier

./ portal_password_reset (Hagijjgjpassword retention
policy)

&
K
g
]
2
2
)

| ./ portal_purgepolicy

settings registry)

®\
3
a
2

(Allows to install/uninstall products)
) ./ portal_referes
) 7 portal_regigffation (Handles registration of new users)

) -/ portal_setup sAdd g0 2nd configuration managemeny

portal_syndication (Generates RSS for folders)
) © portal_tinymce

() ® portal_transforms (Handles data conversion between
MIME types)

3
g

N
3
A
3

@
3
g
9)
g
o

_images/todo_item_behaviors.jpg
Dexterity Content Types
Behaviors

tem (todo_item)

‘Think:aboutclicking, then,click.
Save Defaults

_images/back_to_workflow.jpg
riables

Properties

% Workflow Transition at

orkflow/todo_item_workflow/transitions/reopen

/Plone/porta
Properties changed. (2012-08-18 18:36)
b reopen \

Thisjtakes you/back:

Title Reopen

Description [whoops! This task is still in progress. tojthe core workflow/

_images/add_content_type.jpg
.l - -

You are here: Home / Dexterity Content Types

e Moarclick...
Dexterity content types

Click the *Add Content Type® button to begin creating a new custom content type. *

| Add New Content Type.

_images/complete_details.jpg
i Properties Y)

“t Workflow Transition at /plone_api/portal_workflow/todo_item_workflow/transitions/complete
1d complete

Title

Complete

Description Complete this task.

Destination state [completed

ﬁ_ Doublecheck

Trigger type Automatic
©) Tnitiated by user action
Script (before) (None) Tojallowianyonejtoupdate, use "View"
Script (after) Mone) ¢ /
Simrd Permission(s) [Modify portal content| Role(s) Group(s)
Expression [|[?]
Displayinactions Name (formatted) [Compiere offmm— |

URL (formatted) content_urls/content_status_modifyMworkiol

Icon URL (formatted)
Category workflow \

Donjtithinkitoo)much. justiremember;the formula

Save changes

_images/initial_state.jpg
Properties | States | Transitions | Variables | Worklists | Scripts | Permissions | Groups.

T Workflow States at /Plone/portal_workflow/todo_item_workflow/states
completed Completed

reopen (Reopen)

¥ * open Open wffmmm— check

ete Complete)

oeee click

_images/home_base.jpg
X Workflow State at
/Plone/portal_workflow/todo_item_workflow/states/open
1d ‘open

Title Open

Description

Possible Transitions ¥ complete (Complete)
() reopen (Reopen)

| Save changes |

_static/comment-close.png

_static/minus.png

_static/comment.png

_images/behaviors_config.jpg
« Back to Dexterity Content Types

Behaviors for TODO ltem (todo_item)

() Basic metadata
Adds a title and descriptio

‘and language setting

() Dublin Core metadata
Adds Dublin Core metadata fields (equals Basic metadata + Categorization + Effective range + Ownership)

() Effective range
Assign an effective and/or expiration date

) Exclude From navigation
Allow items to be excluded from navigation

) Hide rules tab
Remove the rules tab when viewing this piece of content

) Hide share tab
Remove the share tab when viewing this piece of content

() Name from file name
Automatically generate short URL name for content based on ts primary field file name

& Name from title
ol it bl BN e o e et s e R

_static/comment-bright.png

_images/find_addons.jpg
& C & | [localhost:8080/Plone/@@overview-controlpanel

m News Events Users Cleanup codebase TODO ITems

You are here: Home

Site Setup
Configuration area for Plone and add-on Products.
‘Addiandiremove products here:

Plone ration

[HTML Filtering 8 Securty

@ Calendar Image Handling @ site

./ Configuration Registry 5 Language @ Themes

* Content Rules &3 Mail © TinyMCE Visual Editor

./ Dexterity Content Types ./ Maintenance @ Types

@ Discussion # Markup 2 Users and Groups

% Editing 75 Navigation 74 Zope Management Interface

@ Erors Q Search

_static/file.png

_images/setup_export.jpg
Contents Y Profiles 1 Impor Upgrades.

/ Generic Setup Tool at /Pidfih/portal setup

Type Name

5l @.mpm-au xport)Blone) configuration

Grne P

L -depenaencies-
20120823;

[import-ali-profile-Products.CMFPlone_plone-20120823

O B import-all-profile-Products.CMFPlone_plone-content-
20120823203236.10g »

@ import-all-profile-plone.app.dexterity_default-201208
O B import-all-profile-plonetheme.classic_default-20120¢
1 import-all-profile-plonetheme. sunburst_default-20120
O [import-all-profile-tutorial.todoapp_default-201208232

Rename | [Cut | [Copy | [Paste | [Delete | [import/Export

_static/up.png

_images/cleanup_states.jpg
Properties | States

Checkiit!

flow States at /Plone/portal_workflow/todo_item_workflow/states
J* published |Itife€ls/so good!

No ir

‘Worklists 1 Scripts | Permissions | Groups 1 Doc

Set Inital State

_static/plus.png

_images/save_open.jpg
T workflow State at
/Plone/portal_workflow/ todo_item_workflow/states/open

d
Title
Description

Possible Transitions ¥ complete (Completc) = check:

open
Open

Forithe user

() reopen (Reopen)

)

_images/manage_portal_workflow.jpg
€ C ¥ [localhost:8080/Plone/manage_main w2 A E R

([./ portal_uidannotation 2012-08-17 12:32
O ./ portal_uidgenerator 2012-08-17 12:32
O ./ portal_uidhandler 2012-08-17 12:32

O 5 portal_undo (Defines actiong
related to undo)

0 © portal_url (Methods
your Plone site)

O ./ portal_vie

éhd functionality TR

nchor you to the root of S e

omizations (Template R

4 portal_workflow (Contains workflow def
your portal)

2012-08-17 12:32

_— - 2012-08-17 12:32
[todo-list (TODO List) 5 1kb 2012-08-17 17:17

O @ translation_service (Provides access to the
translation machinery)

() 2 uid_catalog (Catalog of unique content identifiers) 2012-08-17 12:32

2012-08-17 12:32

[Rename | [Cut | [Copy | [Paste | [Delete | | import/Export | [Select All |

_images/save_rename_workflow.jpg
jepis

Rename,

[Cancel |

_images/retitle_workflow.jpg
% Workflow at /Plone/portal_workflow/todo_item_workflow
d todo_item_workflow

Title TODO Item Workflow

A simple workflow that marks if something is completed or
not.
Description

‘Manager'
role
bypasses
guards

Instance
creation
conditions _Expression

Permission(s) Role(s)

lickit!

_images/export_todo.jpg
Dexterity content types

TheDonit forget toicheck!]l know always doiable for your ste.
select Type Name Description #of items

E [TODO Item SWM%LPJ@E;

Delete | [Clone [Bxport Type Profies || Export schema Models

_images/edit_complete.jpg
 gomplete G

Destination state: (Remain in state)
Trigger: User action

) reopen
Destination state: (Remain in state)
Trigger: User action

_static/ajax-loader.gif

_images/add_new_field.jpg
« Back to Dexterity Content Types

Edit TODO Item (todo_item)

— Defauk

You know)whatitodo.

_images/site_setup.jpg
admin ¥

P l one’ rrrr—
Conly incurent - Preferences
Clickiit! —’sme Sotp

Home News Events ers Log out

_images/reactivate.jpg
() & Working Copy Support (iterate) 2.1.5

Adds working copy support (aka. in-place staging) to Plone.
= 3 *r todoapp 0.1 Checks

Extension profile for tutorial.todoapp.

Click

_images/install_todo.jpg
Chec
s needed for full Dexterity support,

Diazo theme support
Installs a control panel to allow on-the-fly theming with Diazo
HTTP caching support
Installs plone.app.caching
OpenlID Authentication Support
Adds support for authenticating with OpenlD credentials in a Plone site
Plone debug toolbar
Development tools for Plone
Products.Clouseau
Installs the Products.Clouseau package
Session refresh support
Optional plone.session refresh support.
Static resource storage
Afolder for storing and serving static resource files
Workflow Policy Support (CMFPlacefulWorkflow) - no core types
dependency
Add in Plone the capability to change workflow chains for types in
‘every object. With no dependency on core Plone types.
Working Copy Support (Iterate)
Adds working copy support (aka. in-place staging) to Plone.
collective.z3cform.datetimewidget
Enable plone.app.jquerytools support for date-time widget

Check!

_images/copy_workflow.jpg
“. Plone Workflow Tool at /Plone/portal workflow

Type Name
Sl o mme = e ok ouil Eormmen R
Workflow)

") & folder_workflow (Community Workflow for Folders)

O & intranet_sdl:(Checkiity (intranet workrlow for
Fold

het_workflow (Intranet/Extranet Workflow)
M ,‘, 'One_state_workflow (Single State Workflow)

£ plone_sogsiiai ffemmuabgiigklitieal goody
£ simple_publigation_workfTow (Siple Publication
Workflow)

[Rename | [cut |

Delete | [import/Export | [Select Al |

[Add Workflow |

Last Modified
2012-08-23 16:37
2012-08-23 16:37
2012-08-23 16:37

2012-08-23 16:37
2012-08-23 16:37
2012-08-23 16:37

2012-08-23 16:37

_images/map_to_workflow.jpg
Plone Site

rempFolder Ocfault

ropic (Collection (old-style)) [®cfauty

odo_item (TODO Item)

ple_publ

Change l‘—— Clickitosave!

lick the button below to update the security settinas of all workflow-aware oblacts in
S P GliEKihis eVerytime youupdate a workiiow

oulhave itemsthatialready/existiand\you
Update security settings Syeniiael A ey

wantithem to/have the new'workflow:

_images/transitions_tab.jpg
Grou

Properties | States Variables | Worklists | Scripts | Permissior

o Workflow States at /Plon al_workflow/todo_item_workflow/states

State added. (2012-08-18 17:19)

completed
No transitions.
= bigiclick
No transitions.

Delete | | Set Initial State

_images/save_reopen.jpg
Properties

* Workflow Transition at
/Plone/portal_workflow/todo_item_workflow/transitions/reopen

Properties changed. (2012-08-18 18:29)

d reopen
Title Reopen —

Description [whoops! This task is still in progress.

;eis‘leinﬂtinn m— *] effm— Final state

Trigger

Automatic

type
© Initiated by user action HINT: You could leave

Script r—— this .empty/and|put "Owner"

(before) — inithe Role(s) box.

ScHpe ®one)

(after) .

doard Permission(s) [Modify portal content| Role(s) Group(s)
Expression

Display in e

DiepIaY inx Name (formatted) [Reon

URL (formatted) (content_url)s/content_status_modify7workfiow.

Icon URL (formatted)

Last/butinot/IEst. ‘question.

e

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

