
tutorial.todoapp Documentation
Release

June 23, 2014

Contents

1 The Tutorial 3
1.1 Prerequisites . 3
1.2 Tutorial Setup . 3
1.3 Virtualenv . 7
1.4 Troubleshooting . 7
1.5 Chapter 1: Through-The-Web . 8
1.6 Chapter 2: Filesystem package . 29
1.7 Chapter 3: Custom View . 37
1.8 Chapter 4: Bling-bling . 40

2 Developer Documentation 45
2.1 Releasing a new version . 45
2.2 Changelog . 46
2.3 License (3-clause BSD) . 47

3 Indices and tables 49

i

ii

tutorial.todoapp Documentation, Release

WARNING: If you are reading this on GitHub, DON’T! Read it on ReadTheDocs:
http://tutorialtodoapp.readthedocs.org/en/latest/index.html so you have
working references and proper formatting.

Framework Plone 4.3

Bug tracker https://github.com/collective/tutorial.todoapp/issues

Source https://github.com/collective/tutorial.todoapp

Documentation http://tutorialtodoapp.readthedocs.org/

Code status

You will learn to:

• create custom content-types Through-The-Web
• create and apply custom workflows
• create custom listings
• dump your changes into a filesytem package to future-proof them
• write tests for your filesystem package

Summary

It’s a fact - Plone has a lot of complicated features. That doesn’t mean Plone is hard for everything! This is a
simple tutorial that anyone can follow to get a simple Todo list application running inside of Plone. Would you
want to deploy Plone for just a Todo list in real life? Probably not. You can however learn several simple, fast
concepts that will get you most of the way there. Feeling like you don’t understand something completely or the
terminology is getting to you? Sit back, relax, and finish the tutorial. If in the end things still aren’t clear, please
give feedback and we’ll look at what we could do better.

Contents 1

http://tutorialtodoapp.readthedocs.org/en/latest/index.html
http://plone.org
https://github.com/collective/tutorial.todoapp/issues
https://github.com/collective/tutorial.todoapp
http://tutorialtodoapp.readthedocs.org/

tutorial.todoapp Documentation, Release

2 Contents

CHAPTER 1

The Tutorial

WARNING: If you are reading this on GitHub, DON’T! Read it on ReadTheDocs:
http://tutorialtodoapp.readthedocs.org/en/latest/prelude.html so you have
working references and proper formatting.

1.1 Prerequisites

• You have Git installed and vaguely know how to use it.

• You are working with Python 2.6 or 2.7

• You have already installed (listed names are for Ubuntu/Debian, should be similar for your distribution): python-
setuptools, python-virtualenv, zlib1g-dev, libxslt1-dev and libxml2-dev.

• For Ubuntu/Debian users it may be worthwhile to install build-essential (sudo apt-get install build-essential) to
make sure you have necessary build tools.

• Sorry Windows users, but you’ll have to translate as usual from n*x to Windows-ese.

1.2 Tutorial Setup

Since this is a tutorial on how to be a developer, there will always be a little bit of setup. There are many ways that
this could be done and integrated with the Plone Unified Installer, but those are not covered here. It is possible though
to use this tutorial in the context of the Unified Installer by just installing the source skeleton.

1. Using Git, checkout the project code for this tutorial. Then run make to prepare the development environment.
There are sometimes problems on Mac and Linux machines with pre-installed versions of Python. If you run
into issues, please see Troubleshooting:

> mkdir tutorial.todoapp
> git clone git://github.com/collective/tutorial.todoapp.git ./
> make

Note: This will take your system python interpreter. If you wish to use a custom one, run it like make
python=/usr/local/bin/python2.7

Note: Whenever you are stuck with a broken environment and want to start over, run make clean followed by

3

http://tutorialtodoapp.readthedocs.org/en/latest/prelude.html
https://plone.org/documentation/manual/installing-plone/installing-on-linux-unix-bsd/what-is-the-unified-installer

tutorial.todoapp Documentation, Release

make. This will remove everything but your source files and your database, and then continue to rebuild the entire
environment.

Note: Running make also generates this documentation for you locally and runs all tests. See Makefile for other
commands you have available, such as make docs and make tests.

1. Before starting the Plone instance, lets activate our virtualenv. For more information on virtualenv check Vir-
tualenv:

> source bin/activate

2. Next up, start the Plone instance:

> ./bin/instance fg

3. Open up your browser and navigate to http://localhost:8080/

4. Click ‘Create a New Plone Site’. The default username and password is admin:admin.

5. Change the name and id if you wish, but keep in mind that for this tutorial we will assume that the name of the
site is Plone and the Plone instance is located at http://localhost:8080/Plone.

4 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

6. Under Add-ons, make sure to check Dexterity Content Types and tutorial.todoapp then click
Create Plone Site.

1.2. Tutorial Setup 5

tutorial.todoapp Documentation, Release

7. There, your Plone site is created and you can continue with the tutorial.

6 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

Woot! Let’s go.

1.3 Virtualenv

virtualenv is a tool to create isolated Python environments. virtualenv documentation.

1.4 Troubleshooting

Sometimes setting up development environment gives you lemons. There are various ways to go around that.

In case you don’t have correct Python version or your system Python environment is broken (yes, I’m looking
to you OS X), buildout.python gives you get out of jail free card. To install it, see the install docs. Then use
buildout.python/python-2.7/bin/python bootstrap.py –distribute step as in Tutorial Setup section and so on.

If everything fails, it’s time to use a virtual machine. See install steps to prepare and try again with Tutorial Setup
section.

WARNING: If you are reading this on GitHub, DON’T! Read it on ReadTheDocs:
http://tutorialtodoapp.readthedocs.org/en/latest/chapter_1.html so you
have working references and proper formatting.

1.3. Virtualenv 7

http://www.virtualenv.org/en/latest/
https://github.com/collective/buildout.python/blob/master/docs/INSTALL.txt
https://github.com/plone/coredev.vagrant#installation
http://tutorialtodoapp.readthedocs.org/en/latest/chapter_1.html

tutorial.todoapp Documentation, Release

1.5 Chapter 1: Through-The-Web

1.5.1 Getting Started with Content Types

If you don’t know what a content type is, don’t worry! Sit back, relax, and do the tutorial! I’ll save the mumbo jumbo
definitions for another day. In this first part, we will make a Todo list without touching any code. It won’t be fancy,
but it will give you a good idea of how things work in Plone.

The way Plone handles content is a little different than your average relational database driven framework, so if you
don’t understand something right away, sit back, relax, and finish the tutorial.

Generally speaking, content-types are just that: types of content. By default, in Plone you get the News Item content-
type, the Event content-type and so on. So if you add a content item that is of Event type, you are using the Event
content-type. In our case, we will create a new content-type that will represent a Todo Item.

Create a New Content Type

First we need to create a new content type to represent an item on our Todo list. This will be a type with one field, that
which needs to be done.

1. Navigate to site setup as shown below, or just enter http://localhost:8080/Plone/@@overview-controlpanel
in your browser. This is where you can configure Plone for happy fun time.

2. Now comes the fun part. We want to create our own type Through-The-Web aka. TTW.
This type will be a Todo Item. Let’s click Dexterity Content Types (or go directly to
http://localhost:8080/Plone/@@dexterity-types).

8 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

3. Create a Todo List Item by clicking Add New Content Type.

4. Fill in the fields as seen below and then click Add.

5. Now you will see that there is a new type to play with. There are two important things we need to do here: we
need to adjust some behaviors, and add some fields. Let’s look at behaviors first.

1.5. Chapter 1: Through-The-Web 9

tutorial.todoapp Documentation, Release

6. By default, all Plone content-types have Dublin Core metadata enabled (you may know it as title and
description. We don’t need this for our über simple Todo list item. Uncheck Dublin Core metadata
and then click Save.

7. Next we need to add some fields. Because this type is so simple, we will add just one field, but feel free to go
CRAZY. Start by going back to the Fields tab and clicking Add new field....

10 Chapter 1. The Tutorial

http://en.wikipedia.org/wiki/Dublin_Core

tutorial.todoapp Documentation, Release

8. Add a field called Todo, or anything else you want. But! Note that it’s very important that the Short Name
field value is title. By using this key short name, we make sure that all Todo Items are searchable from smart
search. Update the field as seen below and click Add.

9. You will see that a new field has been added to your content type. If you are feeling adventuresome, click on the
settings tab next to the field to set other properties, or just see what’s available.

1.5. Chapter 1: Through-The-Web 11

tutorial.todoapp Documentation, Release

Trying out the Todo Item content-type

Now it’s time to reap the rewards of all of your effort. Let’s put all of our Todo Items in one particular folder so that
we can have collections of items throughout the site. For this tutorial, we will be putting everything in the root of the
site so it’s easy to debug.

1. From the root, add a new folder called TODO list.

12 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

2. Add a new Todo Item to the new Todo folder.

1.5. Chapter 1: Through-The-Web 13

tutorial.todoapp Documentation, Release

3. Celebrate!

You may be wondering about earlier, when we asked you to make sure that the short name for the Todo Item
was called title. The time has come to let you in on a little secret. Calling the short name either title or
description will automatically add that text to the livesearch menu. WHAT?!? I know! When life gives
you lemonade, spike it with vodka and enjoy liberally! You can now search for your Todo Items in Live Search.

But wait a minute... This todo item is marked private, and that doesn’t really make sense. It’s a good thing Plone
has an easy solution for that. In the next section, we will go over the basics of that magical, mystical word: workflow.

1.5.2 Getting Started with Workflows

So what is a workflow? It is a mechanism to control the flow of a content item through various states in time. Most
commonly, and by default in Plone, you deal with a publication workflow. For example: A writer writes up a News
Item and submits it for review. Then the in-house reviewing team goes through the text and publishes the News Item
so it is public for the entire world to see.

14 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

The Todo Item we added in the last section is marked as private because by default all new Plone content items are
assigned a workflow called simple_publication_workflow. I know what you are thinking: simple publication
whodie whatie grble gobble??!?! Just like before, let’s bypass trying to explain what that means and just fix it. Relax,
enjoy, and finish the tutorial!

Todo Items really have 2 states that we are interested in: open and complete. Let’s make that happen.

1. Head over to the ZMI at http://localhost:8080/Plone/manage_main.

2. In the ZMI, open the portal_workflow tool.

On this page, we see all content-types in our portal mapped to a workflow. Our new type, Todo Item, is mapped
to (Default). You can see right below that the default is Simple Publication Workflow. This is
just too complex for our little Todo Item.

3. So let’s create a new one that suites our needs perfectly! Click the contents tab at the top of the page to get
a listing of all the available workflows.

1.5. Chapter 1: Through-The-Web 15

tutorial.todoapp Documentation, Release

You can poke around here all you like, but the details of each one of these workflows are better left to another
tutorial. When in doubt, you can always come back to these workflows to see examples of how things can be
done. Onwards and upwards!

4. Let’s create a new workflow for our Todo Items and call it todo_item_workflow. We will make a
new workflow by copying and customising one of the workflows that are already there. Duplicate the
one_state_workflow.

5. Rename the copied workflow to todo_item_workflow.

16 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

6. You will be spit back out to the workflow contents page. Click the workflow to start editing.

7. Let’s update the name of the workflow so we don’t double take later on.

1.5. Chapter 1: Through-The-Web 17

tutorial.todoapp Documentation, Release

8. Workflow is something that takes time to get used to if you have never encountered the concept. The best
analogy in our case is to a car. The car engine has two simple states: on and off. To transition from on to off and
vice versa, it needs some action from the driver. The same for our TODO items. They have two states: open and
completed. In order to get them from open to completed, the user needs to click something. Don’t understand
yet? Relax, sit back, and finish the tutorial.

Lets start by adding our base states. We will call them open and complete. From the edit workflow screen, click
on the States tab.

18 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

9. Delete the currently listed state.

10. Add two states with the ids open and completed.

1.5. Chapter 1: Through-The-Web 19

tutorial.todoapp Documentation, Release

11. Next lets add transitions. They will take the TODO item from open to completed and vice versa (in case a user
wants to revert an item back to open). Click on the Transitions tab.

12. Add two transitions: complete and reopen. When a user completes a task, it will move into the completed state.
When a user reopens a task, it will go back to the open state.

20 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

13. Let’s add a few details to these new transitions. Let’s start with complete. Click on complete to edit the
transition.

14. First add a title so you remember later what this does. Description is optional but adding one will help you keep
your thoughts clear and remind the future you what the today you is thinking. The destination state should be
set to completed. We also want to make sure that only people with mega permissions, or the creator of the
todo item itself, can change the state so we add Modify portal content to the Permissions box.

All this means nothing if we don’t give the user a chance to change the state. Next to Display in actions
box, we can set the title for what will be displayed in the workflow drop down box of the item (where Pending,
Reject, etc. where earlier). Let’s call it Complete. Last but not least, we need to add the URL that the action
points to. I could make this tutorial 100 years long and explain why you have to do this, but accept that it has to
be done, relax, and follow this formula:

URL = %(content_url)s/content_status_modify?workflow_action=X

where X is the id of the transition. So for this case, in the URL box, you will add

1.5. Chapter 1: Through-The-Web 21

tutorial.todoapp Documentation, Release

%(content_url)s/content_status_modify?workflow_action=complete

Double check everything and click Save.

15. If your brain isn’t hurting yet it will be soon. Go back to the transitions listing.

22 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

1.5. Chapter 1: Through-The-Web 23

tutorial.todoapp Documentation, Release

16. Let’s update the reopen transition and update in a similar manner. This time,
the destination state is open, and following the formula above, the URL is
%(content_url)s/content_status_modify?workflow_action=reopen.

24 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

17. Now we have 2 states and 2 transitions, but they aren’t 100% linked together ... yet. Go back to the workflow
listing, click the States tab and then click on completed to edit the state.

1.5. Chapter 1: Through-The-Web 25

tutorial.todoapp Documentation, Release

18. Add a title, since this is what users see in the top right corner of the TODO items, and then check reopen as
a possible transition. This means that when a TODO item is completed, it will only allow the user to reopen
it (and not re-complete it, for example). In the same respect, open the open transition, add a title, and mark
complete as a possible transition.

26 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

19. When we create a new TODO item, we need to tell Plone what the first state is. Go back to the workflow states
listing, and make open the initial state.

20. And that’s it! Almost... Last but not least, we need to assign our new workflow to our TODO item type. Go
back to the main workflow screen.

1.5. Chapter 1: Through-The-Web 27

tutorial.todoapp Documentation, Release

21. Instead of mapping to the (Default) workflow, we are going to map to the id of our new workflow,
todo_item_workflow, and then click Change.

If you already have TODO items in your site, you MUST click Update Security Settings to update
the workflow for the items. Instead of going into gross detail about why this is the case, just sit back, relax,
finish the tutorial, and remember to click this button any time you make changes (yes! you can continue to
change and update your workflows!).

22. Could the time have arrived? Time to try it out? YES! Go to your Todo folder and add a new TODO Item.
Validate that the workflow works as expected. By toggling between the states.

28 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

Congrats! You have now passed Plone Workflow 101. Next we will transition from developing through the web (TTW)
to developing on the filesystem.

WARNING: If you are reading this on GitHub, DON’T! Read it on ReadTheDocs:
http://tutorialtodoapp.readthedocs.org/en/latest/chapter_2.html so you
have working references and proper formatting.

1.6 Chapter 2: Filesystem package

Alright! In Chapter 1 you got your content-type and your workflow hooked up and running. You’re now ready for the
next step: pushing your changes to a filesystem-based package and into a version control system.

Now, why would you even want to do that? Here’s a couple of reasons:

1. Tracking of changes

The most obvious one: when you store the configuration of your content-type and your workflow in a VCS, you
can track how they changed over time. It’s useful to be able to look back a few months and see how your files
changed.

2. Distribution to other developers

If you are working in a team you have two ways of distributing your work: either write up a guide on what
needs to be clicked for someone to come to the state you are currently at (slow, manual and error-prone) OR you
export your configuration and the other developer simply imports it (fast, consistent).

3. Tests

Last, but the most important one, having your configuration exported to a filesystem package allows you to
write tests for it. When your test runner spins up a Plone site to run tests against, it needs to have the same
content-type and workflow that you configured TTW. And importing configuration is by far the easiest way to
give the test runner just that.

1.6.1 Package skeleton

Let’s start by creating a package skeleton. Since writing things up from scratch kinda sucks, use this tutorial as your
skeleton.

1.6. Chapter 2: Filesystem package 29

http://tutorialtodoapp.readthedocs.org/en/latest/chapter_2.html
http://en.wikipedia.org/wiki/Revision_control

tutorial.todoapp Documentation, Release

1.6.2 Exporting configuration

Exporting Todo Item content-type

Navigate back to the dexterity content type panel or go directly to http://localhost:8080/Plone/@@dexterity-types

Check the TODO item and then click on export type profile to download the type. If you don’t check anything, it
won’t do anything and there is currently no error message so don’t be surprised.

This will start a download to your machine. Navigate to the download directory and unzip the contents of the file that
was downloaded. Here is an example of what it will look like:

We need to take types.xml and the types folder, and save it in our base product. You can use your finder or explorer to
drag and drop, or use the command line. I’ll use command line as an example but feel free to improvise. You want to
move the files into your default product profile. What’s a profile? Don’t worry about it. Sit back, relax, and finish the
tutorial. You will move the files into

tutorial.todoapp/src/tutorial/todoapp/profiles/default

30 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

Warning: There is a bug in Plone 4.3 that makes the import process brake when parsing XMLs that the export
tool exports. To make it work we need to remove the comment line from types.xml:

<!---*- extra stuff goes here -*--->

Anytime you perform some sort of configuration export from Plone to a custom product, you will put the XML files
in the profiles/default folder. Every time you make changes to your types, you should re-export and save into the same
location. Now, when the next person installs the add-on, they wil have the type already there!

Dependencies

Before we continue we need to tell Plone that whenever we install tutorial.todoapp we want it to also pull in
the Dexterity package, so our content type is working happily. We do that by adding the following lines to
profiles/default/metadata.xml, inside the <metadata> tag.

<dependencies>
<dependency>profile-plone.app.dexterity:default</dependency>

</dependencies>

Exporting todo_item_workflow

Exporting a workflow is very similar to exporting a Dexterity type. It just takes a little bit more nav-
igating and a trip to the ZMI. To export the workflow, navigate to the root of the ZMI by gong to
http://localhost:8080/Plone/manage_main. From there, head into the portal_setup tool:

1.6. Chapter 2: Filesystem package 31

tutorial.todoapp Documentation, Release

WARNING: The following User Interface is not recommended for children under 18.

In the portal_setup tool, click on the export tab.

32 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

There are a LOT of things that you can export here, but that is for a different tutorial. For now, find export item #27
called Workflow Tool, check the box to the left. Then scroll all the way to the bottom and Export selected
steps.

1.6. Chapter 2: Filesystem package 33

tutorial.todoapp Documentation, Release

Just like the Dexterity content type, you will want to untar the downloaded folder, and move into your default profile
folder.

In that download you should have a file called workflows.xml and a folder called workflows like below. You
will move both of them to the default profile.

34 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

Place all of these files in your profile at

tutorial.todoapp/src/tutorial/todoapp/profiles/default

Now, this export exported the entire configuration for all workflows in your site. But you are only interested in the
todo_item_workflow configuration and you don’t want to change configuration for other workflows. So, first,
remove all other workflow definitions (XML files).

rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/comment_review_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/folder_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/intranet_folder_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/intranet_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/one_state_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/plone_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/simple_publication_workflow

Secondly, remove all non-todoitem-related stuff from workflows.xml. In the end the file should look like this:

<?xml version="1.0"?>
<object name="portal_workflow" meta_type="Plone Workflow Tool">
<object name="todo_item_workflow" meta_type="Workflow"/>
<bindings>
<type type_id="todo_item">
<bound-workflow workflow_id="todo_item_workflow"/>

</type>
</bindings>
</object>

And you are done! Congratulations on the birth of your new product!

1.6. Chapter 2: Filesystem package 35

tutorial.todoapp Documentation, Release

1.6.3 Tests

Alright, tests! Considered a pain and a nuisance by some but loved by all who do it. If you want your code to be solid
and your site to be stable, tests are a great way to get there.

The package you have on your filesystem is already configured to give you a test-runner so you can immediately go
and run it – obviously you have no tests, but at least you try if your test runner works.

tutorial.todoapp$ make tests
Total: 0 tests, 0 failures, 0 errors in 0.000 seconds.

Note: you do NOT need to stop your Plone instance in order to run tests. They will peacefully co-exist.

Good, the next thing to do is to add tests. Go to tutorial.todoapp repo on GitHub and copy/paste (or download)
all files from the src/tutorial/todoapp/tests folder to your local src/tutorial/todoapp/tests
folder. You can also get the tests with git:

$ git branch --track chapter2 origin/chapter2 # tell git what chapter2 is
$ git checkout chapter2 src/tutorial/todoapp/tests # get tests

This folder will contain your test files:

• test_setup.py

This module contains tests that check if your package was successfully installed and configured. Tests in here
are concerned with XML files you have in the profiles/default folder.

• test_todo_item.py

And finally a module that contains tests for your custom content-type.

We will not go into details of what each test does as we believe the test code and its comments are in themselves
informative and we will rather encourage you to go through all tests, try to understand what they do, maybe change
something and see what happens, etc.

Remember that you run tests with make tests and you should get an output that looks somewhat like this:

tutorial.todoapp$ make tests
[...snip...]
Set up tutorial.todoapp.tests.base.TodoAppLayer:Integration in 0.000 seconds.
Running:

Ran 11 tests with 0 failures and 0 errors in 9.782 seconds.
Tearing down left over layers:
Tear down tutorial.todoapp.tests.base.TodoAppLayer:Integration in 0.000 seconds.
Tear down tutorial.todoapp.tests.base.TodoAppLayer in 0.004 seconds.
Tear down plone.app.testing.layers.PloneFixture in 0.164 seconds.
Tear down plone.testing.z2.Startup in 0.012 seconds.
Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

Also, remember that whenever you run make your tests are gonna be run too.

1.6.4 Troubleshooting

If something goes wrong you can always go to GitHub and see how the code for chapter 2 should look like and
compare this to what you have on your local machine.

WARNING: If you are reading this on GitHub, DON’T! Read it on ReadTheDocs:
http://tutorialtodoapp.readthedocs.org/en/latest/chapter_3.html so you

36 Chapter 1. The Tutorial

https://github.com/collective/tutorial.todoapp/
https://github.com/collective/tutorial.todoapp/tree/chapter2
http://tutorialtodoapp.readthedocs.org/en/latest/chapter_3.html

tutorial.todoapp Documentation, Release

have working references and proper formatting.

1.7 Chapter 3: Custom View

In this chapter you will learn how to add a custom view – in our case a listing of Todo Items.

1.7.1 View class

Let’s start by adding the view class. You can go to tutorial.todoapp repo on GitHub and copy over code from
src/tutorial/todoapp/todo.py to your local computer or just use git:

$ git branch --track chapter3 origin/chapter3 # tell git what chapter 3 is
$ git checkout chapter3 src/tutorial/todoapp/todo.py

We also need to tell Plone to display this view in the display drop-down menu for Folders so we will later be able to
set our view as a default display view for our Todo folder. Let’s do that by using git to get a version of Folder.xml
and put it in src/tutorial/todoapp/profiles/default/types.

$ git checkout chapter3 src/tutorial/todoapp/profiles/default/types/Folder.xml

1.7.2 View template

Now that we have a class we can also add the template. Go to tutorial.todoapp repo on GitHub and copy over code
from src/tutorial/todoapp/templates/todo.pt to your local computer or, again, use git.

$ git checkout chapter3 src/tutorial/todoapp/templates/todo.pt

The template uses the ZPT syntax, read more about it here.

1.7.3 Static resources

The template displays different icons for different workflow states of your Todo Items. We need to add these icons to
your package:

1. Download open.png and completed.png from GitHub (they are in
src/tutorial/todoapp/static) into a new folder on your local computer:
src/tutorial/todoapp/static. You can use git again if you don’t like manual work.

$ git checkout chapter3 src/tutorial/todoapp/static

2. Tell Zope that this static folder contains static resources (icons, CCS files, JavaScript files, etc.) by adding
the following lines to src/tutorial/todoapp/configure.zcml inside the <configure tag:

<!-- Publish static files -->
<browser:resourceDirectory

name="tutorial.todoapp"
directory="static" />

After restarting your Zope server, files in your static folder will be available on a standard URL:
http://localhost:8080/Plone/++resource++tutorial.todoapp/<filename>

1.7. Chapter 3: Custom View 37

https://github.com/collective/tutorial.todoapp/
https://github.com/collective/tutorial.todoapp/
http://wiki.zope.org/ZPT/TutorialPart1

tutorial.todoapp Documentation, Release

1.7.4 Try it out

Because the XML configuration of our product has change, we need to reinstall the product. This is accom-
plished by deactivating and reactivating the product. Navigate to the add-ons manager or go directly
to http://localhost:8080/Plone/@@overview-controlpanel.

Deactivate the tutorial.todoapp product, and then reactivate it.

38 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

Note that every time you make a change to the xml files, by exporting or manual edit, you must reactivate the product
for the changes to take effect!

Now, we apply the new view to the folder holding our todo items. Navigate to the folder you created in chapter 1, and
update the display.

Celebrate!

1.7. Chapter 3: Custom View 39

tutorial.todoapp Documentation, Release

If the de-activate / activate does not work you may need to restart Plone instance to see the changes.

1.7.5 Tests

Cool, so you have verified that your code works through the browser and it’s time to add tests to make sure your code
keeps on working in the future.

First add the following snippet to test_setup.py to verify that your Folders have the todo view on the Display
drop-down menu.

types/Folder.xml
def test_folder_available_layouts(self):

"""Test that our custom display layout (@@todo) is available on folder.

Also make sure that layouts that come with Plone out-of-the-box are
also still there.
"""
layouts = self.portal.folder.getAvailableLayouts()
layout_ids = [id for id, title in layouts]

out-of-the-box layouts are still there
self.assertIn(’folder_listing’, layout_ids)
self.assertIn(’folder_summary_view’, layout_ids)
self.assertIn(’folder_tabular_view’, layout_ids)
self.assertIn(’atct_album_view’, layout_ids)
self.assertIn(’folder_full_view’, layout_ids)

our custom one
self.assertIn(’todo’, layout_ids)

If you haven’t already downloaded it, add a new test module: test_todo_view.py. Download it from GitHub,
put and it in your tests folder and run tests. Feel free to fiddle around with it to see what it does. As always, you
can use git to get the file.

$ git checkout chapter3 src/tutorial/todoapp/tests/test_todo_view.py

1.7.6 Troubleshooting

If something goes wrong you can always go to GitHub and see how the code for chapter 3 should look like and
compare this to what you have on your local machine.

WARNING: If you are reading this on GitHub, DON’T! Read it on ReadTheDocs:
http://tutorialtodoapp.readthedocs.org/en/latest/chapter_3.html so you
have working references and proper formatting.

1.8 Chapter 4: Bling-bling

As a reward for making it all the way to the end, we will help you add some fancy features to your project, otherwise
known as bling and that means having to write JavaScript. Fortunately Plone comes with jQuery so we can easily
integrate.

40 Chapter 1. The Tutorial

https://github.com/collective/tutorial.todoapp/tree/chapter3
http://tutorialtodoapp.readthedocs.org/en/latest/chapter_3.html

tutorial.todoapp Documentation, Release

The final part of this tutorial will allow users to check and un-check items on their todo list without having to load a
new page request. Note that by developing the functionality in this order, 100% of the functionality of the application
remains working even when javascript is disabled. Win!

1.8.1 AJAX view

Before we add front-end bling, we need some code that can handle these requests coming in. Let’s create a simple view
that will update the object in context to a new state. Go to GitHub and copy the code for WorkflowTransition
class in todo.py. This class represents a view that our AJAX code will call. You can also get the code with git,
however note that now we are checking out code from master, as Chapter 4 is the last chapter and its code is in the
master branch.

$ git checkout master src/tutorial/todoapp/todo.py

Take a look at the WorkflowTransition class and comments around the code. There are a couple of things to
point out specific to this setup:

grok.context(Container)

Tells us that this view should be called in the context of a Dexterity Container item. So if you try to go to this view
from the portal root or anywhere in the site that is not a Dexterity item, Plone will return a 404 - not found error. By
default all Dexterity types that you create TTW are based on the Dexterity Container base class.

grok.name(’update_workflow’)

This tells us on which URL the view will be available on. In this case, on
<url_to_plone_content_object>/update_workflow.

def render(self):

render is a special function that must be used. It is where all of the code must go when used with grok directives.
This is the main block of code that will be executed.

transition = self.request.form.get(’transition’, ’’)

self.request is set by the base class, and anything based on BrowserView will have access to this variable. All
of GET/POST parameters will be stored in self.request.form.

self.request.response.setHeader(
’Content-Type’, ’application/json; charset=utf-8’)

return json.dumps(results)

When working with JSON, it’s not required to set the header content type, but when used with certain jQuery calls it
is expected to have the header set correctly. If you don’t set this, it will sometimes work and sometimes not. Get used
to setting it!

Additionally, we return the result serialized as json by default. For making and testing JSON web service calls, keep
in mind that they should do exactly one thing and no more. This makes it easy to integrate with Javascript and VERY
easy to test. We’ll see later on how easy it is to test this view.

Furthermore, before taking the plunge to wire up JavaScript, go directly to the url and test the change. For example, if
you have an item at http://localhost:8080/Plone/todo-list/go-to-the-bathroom, you can test
the view by appending the view name and GET variables to the end of the item’s url. However, you first need to restart
your Zope first, so your Python files get reloaded!

http://localhost:8080/Plone/todo-list/go-to-the-bathroom + update_workflow?transition = complete

http://localhost:8080/Plone/todo-list/go-to-the-bathroom/update_workflow?transition=complete

1.8. Chapter 4: Bling-bling 41

tutorial.todoapp Documentation, Release

For extra clarity: if you are not an expert in python, plone, AND javascript, I highly recommend integrating bling
bling in the following order:

1. Write base view and passing test cases

2. Test views in browser

3. Make ajax interactive

Starting with bling from the start will only bring you pain.

1.8.2 Custom JavaScript

Now that we know the update_workflow view is working, let’s add some AJAX handling on the top of it. Check-
out the Javascript file and a JavaScript registry file into your working directory:

git checkout master src/tutorial/todoapp/static/todoapp.js
git checkout master src/tutorial/todoapp/profiles/default/jsregistry.xml

jsregistry.xml contains all configuration needed to tell Plone how it should register and use our JavaScript. It
has a lot of options that are pretty self explanatory (if you think like a machine).

1 <?xml version="1.0"?>
2 <object name="portal_javascripts">
3 <javascript
4 cacheable="True"
5 compression="safe"
6 conditionalcomment=""
7 cookable="True"
8 enabled="True"
9 expression=""

10 inline="False"
11 id="++resource++tutorial.todoapp/todoapp.js" />
12 </object>

1.8.3 Trying it out!

Holy moley you made it! Restart Zope (to reload Python files), reactivate the product (to reimport XML files), do
a hard reload in your web browser (to clear any caches) and check out your todo list. The todo items should toggle
between complete and incomplete without the page reloading. Sweet!

1.8.4 Tests

As always, let’s add tests! First add the following snippet to test_setup to verify that your JavaScript is registered
in Plone.

jsregistry.xml
def test_js_registered(self):

"""Test that todoapp.js file is registered in portal_javascript."""
resources = self.portal.portal_javascripts.getResources()
ids = [r.getId() for r in resources]

42 Chapter 1. The Tutorial

tutorial.todoapp Documentation, Release

self.assertIn(’++resource++tutorial.todoapp/todoapp.js’, ids)

Lastly, add a new test module: test_workflow.py. Download it from GitHub, put and it in your tests folder
and run tests. Then fiddle around with it to see what it does. As always, you can use git to get the file.

$ git checkout master src/tutorial/todoapp/tests/test_workflow.py

1.8.5 The end

This concludes the Todo app in Plone tutorial. Congratulations! Now it’s time to checkout other tutorials and docu-
mentation available on developer.plone.org!

1.8.6 Troubleshooting

If something goes wrong you can always go to GitHub and see how the code in master should look like and compare
this to what you have on your local machine.

1.8. Chapter 4: Bling-bling 43

http://developer.plone.org
https://github.com/collective/tutorial.todoapp/

tutorial.todoapp Documentation, Release

44 Chapter 1. The Tutorial

CHAPTER 2

Developer Documentation

Information on how to contribute to this tutorial. Note that all code should follow plone.api code conventions.

2.1 Releasing a new version

Releasing a new version of tutorial.todoapp involves the following steps:

1. Create a git tag for the release.

2. Push the git tag upstream to GitHub.

3. Generate a distribution file for the package.

4. Upload the generated package to Python Package Index (PyPI).

2.1.1 Checklist

Before every release make sure that:

1. You have documented your changes in the HISTORY.rst file.

2. You have modified the version identifier in setup.py to reflect the new release.

3. You have confirmed that the package description (generated from README.rst and others) renders correctly
by running bin/longtest.

4. You have committed all changes to the git repository and pushed them upstream.

5. You have the working directory checked out at the revision you wish to release.

2.1.2 Actions

For help with releasing we use jarn.mkreleaser. It’s listed as a dependency in setup.py and should already
be installed in your local bin:

$ bin/mkrelease -d pypi -pq ./

Note: In order to push packages to PyPI you need to have the appropriate access rights to the package on PyPI and
you need to configure your PyPI credentials in the ~/.pypirc file, e.g.:

45

http://ploneapi.readthedocs.org/en/latest/contribute/conventions.html

tutorial.todoapp Documentation, Release

[distutils]
index-servers =

pypi

[pypi]
username = fred
password = secret

2.1.3 Example

In the following example we are releasing version 0.1 of tutorial.todoapp. The package has been prepared so that
setup.py contains the version 0.1, this change has been committed to git and all changes have been pushed
upstream to GitHub:

Check that package description is rendered correctly
$ bin/longtest

Make a release and upload it to PyPI
$ bin/mkrelease -d pypi -pq ./
Releasing tutorial.todoapp 0.1
Tagging tutorial.todoapp 0.1
To git@github.com:collective/tutorial.todoapp.git

* [new tag] 0.1 -> 0.1
running egg_info
running sdist
warning: sdist: standard file not found: should have one of README, README.txt
running register
Server response (200): OK
running upload
warning: sdist: standard file not found: should have one of README, README.txt
Server response (200): OK
done

Note: Please ignore the sdist warning about README file above. PyPI does not depend on it and it’s just a bug in
setupools (reported and waiting to be fixed).

2.2 Changelog

2.2.1 1.1 (2013-07-04)

• Instructions for preparing the environment on various OSes. [ielectric, zupo]

• Proof-reading the tutorial text. [ielectric, zupo]

• Use latest best practices from bobtemplates.niteoweb. [zupo]

• Use Plone 4.3. [zupo]

2.2.2 1.0 (2012-09-11)

• Acted as guinea pigs and went through the entire tutorial slowly and thoroughly. [matejc, plamut]

46 Chapter 2. Developer Documentation

tutorial.todoapp Documentation, Release

• AJAXifying the @@todo view. [eleddy]

• The @@todo BrowserView for listing Todo Items. [zupo]

• Tests for GenericSetup exports of content-type and workflow. [zupo]

• TTW part of the tutorial, loads of screenshots. [eleddy]

• Skeleton. [zupo]

2.3 License (3-clause BSD)

Copyright (c) 2012, Caipirinha Sprinters. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Caipirinha Spriners nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL CAIPIRINHA SPRINTERS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2.3. License (3-clause BSD) 47

tutorial.todoapp Documentation, Release

48 Chapter 2. Developer Documentation

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

49

	The Tutorial
	Prerequisites
	Tutorial Setup
	Virtualenv
	Troubleshooting
	Chapter 1: Through-The-Web
	Chapter 2: Filesystem package
	Chapter 3: Custom View
	Chapter 4: Bling-bling

	Developer Documentation
	Releasing a new version
	Changelog
	License (3-clause BSD)

	Indices and tables

